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Hausdorff dimension from the minimal spanning tree
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A technique to estimate the Hausdorff dimension of strange attractors, based on the minimal
spanning tree of the point distribution, is extensively tested in this work. This method takes into
account in some sense the infimum requirement appearing in the definition of the Hausdorff dimen-
sion. It provides accurate estimates even for a low number of data points and it is especially suited

to high-dimensional systems.
PACS number(s): 05.45.+b, 02.50+s

A peculiar feature of dynamical systems which exhibit
chaotic behavior is the appearance of strange attrac-
tors for some values of their control parameters. These
strange attractors are characterized by a noninteger di-
mension, the Hausdorff dimension, which distinguishes
between regular motion and deterministic chaos.

The Hausdorff dimension is mathematically defined as
follows [1]: Let us consider a set A with a measure u
embedded in a Euclidean d-dimensional space. Let R(e)
be the family of all countable coverings of A formed by
domains of diameters §; < €. For 8 > 0 we form the
partition sums:

HP(A) = lim inf () >l 1)
i€l

where the infimum is taken on the set of all the possible
countable coverings of A with diameters §; < ¢, R(e). It
can be shown that for any A there always exists a critical
value Dg such that

HP(A) =0 if 3> Dy, HP(A)=00 if 3<Dy. (2)

This critical exponent is known as the Hausdorff dimen-
sion of the set A.

When one intends to calculate the Hausdorff dimen-
sion of strange attractors appearing in dynamical sys-
tems (either maps or autonomous ordinary differential
equations), in most cases what we have at our disposal is
a time series formed by a discrete set of N points which
sample the attractor. The Hausdorff dimension of any
countable set is trivially zero; nevertheless, we are inter-
ested in the estimation of the dimensionality of the at-
tractor itself, i.e., the support of the point distribution.
The mathematical definition of the Hausdorff dimension
given in Egs. (1) and (2) cannot be applied to our prob-
lem and, in consequence, we do not aim at a calculation
of the Hausdorff dimension in the sense of this definition,
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but only at an estimate of the Hausdorff dimension of the
strange attractor from its finite point realization. This
estimate has to remain as close as possible to the original
definition.

In the literature about this subject, apart from the
calculations based on local Lyapunov exponents [2—4],
the following approaches are found.

(a) Traditionally, Dy has been calculated through the
box-counting algorithm, which leads to the so-called at-
tractor capacity [5] Dc. However, this method is very
memory consuming and it is not useful when d is greater
than 2 [6,7].

(b) Another possibility is to randomly choose Ng
points among the N which sample the attractor and to
take as domains balls centered on them. A covering is
formed by fixing a natural number n and taking the ball
radii €;(INg,n) in such a way that each ball contains n
points. There are two possibilities: (i) either the n points
are taken out of the IV points which sample the attractor
[4,8,9] or (ii) the n points are taken out of the Ng ran-
domly chosen among the N [10]. In this way we assign
to each ball a weight or probability:

P=% 3)

in the first case, and
n
_— 4
P=xN- 4)
in the second case. The radii €¢;(Ng,n) are the distances

of point i to its n-nearest neighbor. The partition sums
which allow us to determine the Hausdorff dimension are

M
1
WP (A,p) = — > e(p)’ (5)
M=
with M = Ng in case (i) and M = N in case (ii).
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For finite point distributions, the limit appearing in
Eq. (1) (equivalent in this case to making N — oco) can-
not be taken, and we have to resort to some approxi-
mating methods. The sums in Eq. (5) present a scaling
behavior when the probability p is varied within a certain
range of its values, termed the scaling region. The prob-
ability p can be varied either by changing n in Eq. (3) or
by changing Ng in Eq. (4). In both cases we have, for p
within its scaling region,

WP(A,p) = K(B)p?/94). (6)

The fixed point of the g(8) function, defined by this
equation, gives us an estimate of the Hausdorff dimension
Dy = 9(D()) [4,8,10]. Strictly speaking, the method
gives an upper limit [11] to Dy when N — oo. Notice
that even if the methods (i) and (ii) to construct the
probabilities are equivalent from a mathematical point
of view, when dealing with finite point sets and due to
finite sample effects, they could lead to results which are
not exactly the same.

(c) Another possible choice is to form a covering by
fixing the ball radii to a value €, and then to assign to
each ball a probability p;(¢) as in Eq. (3), with n;(e)
now depending on the particular ball considered. The
partition sum is now

1 &
Z(Ae) = mZpi(e)'l. (7)
i=1

If it scales as
Z(A,€) x D, (8)

then we get another estimate of Dy, D(® [12,13].

We would like to point out that in the methods out-
lined so far, the infimum on the coverings of the attrac-
tor, demanded by the definition of the Hausdorff dimen-
sion, has not been considered. We now present another
method where this infimum is in some sense taken into
account: the minimal-spanning-tree (MST) technique.

The MST of a point distribution is a graph-theoretical
construct which was introduced by Kruskal [14] and Prim
[14]. Stated in terms of graph theory, given a set of N
points, a spanning tree is a network of N — 1 edges, each
of them linking two points in the distribution, such that
it provides a path between any pair of points in the set
and contains no closed loops or circuits. The minimal-
spanning-tree is the tree which satisfies the condition that
the sum of the lengths of its edges is minimum. For a
given distribution of N points, only one MST can be
constructed. A spanning tree defines a set of balls whose
diameters are the edge size and which are centered on
the middle point of these edges. These balls provide a
covering for the attractor.

Given N points which sample an attractor and Ng
points randomly chosen among them, their MST is
formed by the Ngr points and m = Ngr — 1 segments
of lengths {l;}7>,. When the N points have compact
support on R%, with d > 2, it has been shown [15] that
the MST provides us with a method to calculate the di-

mension d. We now conjeture that when, instead, the
N points have support in a strange attractor, the MST
provides us with a technique to estimate its Hausdorff
dimension. The Hausdorff dimension of the attractor A
can be determined [16] by forming the sums

S (Am) = L 3 1 m. ©)

i=1

In these sums, the infimum condition appearing in Eq.
(1) has not been made explicit, but due to the fact that
the MST is the spanning tree with minimal length, the
infimum requirement has somehow been considered, be-
cause l;(m) are the branch lengths of the MST. In fact,
the sums in Eq. (9) give us the infimum taken over all
possible coverings of the attractor formed by spanning
trees as explained above. These sums present a scaling
behavior as m is varied:

SP(A,m) = K(B)ym=P/MB), (10)

which defines the function h(8). The fixed point of this
function h(D(0)) = D(0) is a good estimate of the Haus-
dorff dimension. Due to the fact that in the sums of
Eq. (9) we have considered the infimum not over all pos-
sible coverings of the attractor but only over those defined
by spanning trees, the same arguments of Ref. [11] can
be used to show that, as far as m — oo makes sense, the
following inequality holds Dy < D(0). Note, however,
that when m does not go to infinity, there is no guarantee
that the estimate is an upper bound to Dy as defined by
Egs. (1) and (2) above.

Equations (9) and (10) are a particularization of the
general definition of the Hausdorff dimension when the
covering provided by the MST of the N points is used.
The condition of minimum on the different possible cov-
erings is now taken into account by demanding that the
total length of the spanning tree is minimum. This re-
mains as close as possible to realizing the definition of the
Hausdorff dimension within present computer capacities.

We have calculated the MST of point sets using the
algorithm described by Prim in the Whitney [17] ver-
sion. An arbitrary point in the set is first chosen, and
its nearest neighbor is found. These two points and the
edge which links them form the first subtree 73. For
each isolated point (point not yet in the subtree), the
algorithm calculates its distance to the subtree 77, that
is, the distance to its nearest neighbor within the sub-
tree. These distances and the identity of these neighbors
are stored. The Mth subtree T)s is built up by adding
to the (M — 1)th subtree Ths—1 the isolated point whose
distance to Ths—; is minimum, together with the corre-
sponding link. Then, the distances from isolated points
to Ty are calculated, and so on. The MST is Ty, —1. The
total computer CPU time required goes as Nr(Ng—1)/2
in a scalar machine and as Ng in a vectorial machine, and
it is also proportional to the embedding dimension of the
point set d.

The suitability of the MST technique to estimate the
Hausdorff dimension has been tested on four well-known
two-dimensional maps: the Baker [18] transformation
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with @ = 0.3; the Lozi [19] map with a = 1.7,b = 0.5;
the Hénon [20] map with a = 1.4,b = 0.3; and the
Kaplan and Yorke map [21] with @ = 0.2; and on one
three-dimensional system of ordinary differential equa-
tions: the Lorenz [22] system with parameters s = 10,
b=8/3, and r = 28.

In all cases, time series with N = 2 x 10* points were
generated (in the case of the Lorenz attractor, a delay
time of 7 = 0.25 was employed). We used as the scaling
region the interval 100 < Ngr < 7500, where nine differ-
ent logarithmically equidistant values of Ny were fixed.
Then, minimal-spanning trees with Ng points randomly
chosen among the N were calculated for the nine differ-
ent values of Ng, and the sums in Eq. (9) were formed.
The h(B) function was determined from Eq. (10) by per-
forming linear regressions in the log-log plane at fixed 3
values.

Due to finite sample effects, the value of the S%(A, m)
sums depends to a small degree on the particular choice
of the Ng points. In order to alleviate this difficulty, ten
different random selections were performed for each Ny
value, and then we have calculated h(83) by means of a
linear-regression fit

(logo S%(4,m)) = logio K(B) — o logygm, (1)

h(B)
where the angular brackets stands for an average per-
formed on the different random selections. We gave the
same weight to each of the nine N values because the
changes in the partition sums when the result of the Ng
points selection varies are similar for any Npg.

The resulting D(0) values we obtained for the five at-
tractors are given in column 2 of Table I. Column 3 gives
the errors obtained when the scaling region is varied and
we take seven points within either 294 < Np < 7500
or 100 < Ngr < 2548. In order to test the stability of
our results against the change in the choice of the Ng
random points, the results of the ten above-mentioned
selection processes were taken in groups of five. Then,

the averages of log;, S#(A, m) were calculated indepen-
dently over each group of five selections, and the results
obtained for D(0) were compared. In column 4 of Table
I we give the maximum differences of these results with
respect to the D(0) values shown in column 2. Finally,
in column 5, we present different Dy estimates obtained
by other methods.

Comparison of columns 2 and 5 in Table I indicates
that the MST technique gives very good estimates of the
Haussdorff dimension, even for a relatively low number
of points in the time series. This is particularly remark-
able for the Hénon attractor: the method produces a
D(0) value which agrees with those found through local
Lyapunov exponents.

Some comments are necessary concerning the Lorenz
attractor. Because of the paucity of estimates of its
Hausdorff dimension (the box-counting technique does
not converge in this case), we repeated the calculation
with N = 10° points in the time series, taking as the
scaling region the range 400 < Ngr < 40000, where 20
logarithmically equidistant values of Np were fixed. We
repeated the calculation procedure explained above, and
obtained the results given in Table I. We are led to the
conclusion that the method already gives a good accu-
racy for N = 2 x 10% points. Moreover, the Hausdorff di-
mension of the Lorenz attractor was evaluated by means
of th n-nearest-neighbor technique?® [method (b) above],
and, as shown in Table I, taking N = 105 for the time
series the results of this method agree within the errors
with the values reported from the MST. Note, however,
that both D(0) and D(g) are different estimates of the
Hausdorff dimension Dy, so it is not necessary that they
coincide. Also, the overall scaling properties of Egs. (6)
and (10) are not the same; in fact, for the Lorenz and
other attractors, they produce g(8) and h(3) functions
which are different [23).

To conclude, an estimate of the Hausdorff dimension
for point distributions can be calculated using the MST
algorithm, for any value of the phase-space dimension d

TABLE I. The Hausdorff dimension of different attractors calculated by means of the MST.

Other estimates are given for comparison.

System D(0) A1D(0) A2D(0) Other estimates

Baker 1.596 0.029 0.003 1+ log;o 2/|1og0 0.3
= 1.575716 642*

Hénon 1.270 0.022 0.003 1.272 + 0.006

1.2755 + 0.0005%
1.28 +0.01°

1.261 & 0.003¢

Lozi 1.431 0.001 0.004

Kaplan and Yorke 1.396 0.017 0.005 1.4316 =+ 0.0016¢

Lorenz 2.165 0.002 0.009 2.148 + 0.002°

Lorenz (N = 10°) 2.155 0.002 0.005

®See Ref. [3].

PSee Ref. [2].

°See Ref. [7].

dSee Ref. [24].

°See Ref. [23].
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and for any kind of attractor. It is much more efficient
than the classical box-counting algorithm, and produces
accurate estimates of Dy even with only a low number
of points in the time series. The computational efficiency
of the MST technique is similar to the efficiency of the
method based in the n-nearest-neighbor distances, when
binary trees are used for the searching algorithm. In fact,
one run of this former method with N = 20000 points
performed in order to store the distances from each point
to its n-nearest neighbor, for nine values of n in the scal-
ing region 24 < n < 28, takes 5.8 times more CPU time
than one run of the MST method, with also nine points
in the scaling interval 100 < Ng < 7500. Nevertheless, as

it is recommendable to average for several choices of the
Npg random points [see Eq. (11)], the efficiency is rather
equivalent. It is also possible to generalize Eq. (10) in
order to extract information about the Rényi dimensions
from the MST method [23,25].
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